Oncogenic ALK regulates EMT in non-small cell lung carcinoma through repression of the epithelial splicing regulatory protein 1
نویسندگان
چکیده
A subset of Non-Small Cell Lung Carcinoma (NSCLC) carries chromosomal rearrangements involving the Anaplastic Lymphoma Kinase (ALK) gene. ALK-rearranged NSCLC are typically adenocarcinoma characterized by a solid signet-ring cell pattern that is frequently associated with a metastatic phenotype. Recent reports linked the presence of ALK rearrangement to an epithelial-mesenchymal transition (EMT) phenotype in NSCLC, but the extent and the mechanisms of an ALK-mediated EMT in ALK-rearranged NSCLC are largely unknown. We found that the ALK-rearranged H2228 and DFCI032, but not the H3122, cell lines displayed a mesenchymal phenotype. In these cell lines, oncogenic ALK activity dictated an EMT phenotype by directly suppressing E-cadherin and up-regulating vimentin expression, as well as expression of other genes involved in EMT. We found that the epithelial splicing regulatory protein 1 (ESRP1), a key regulator of the splicing switch during EMT, was repressed by EML4-ALK activity. The treatment of NSCLC cells with ALK tyrosine kinase inhibitors (TKIs) led to up-regulation of ESRP1 and E-cadherin, thus reverting the phenotype from mesenchymal to epithelial (MET). Consistently, ESRP1 knock-down impaired E-cadherin up-regulation upon ALK inhibition, whereas enforced expression of ESRP1 was sufficient to increase E-cadherin expression. These findings demonstrate an ALK oncogenic activity in the regulation of an EMT phenotype in a subset of NSCLC with potential implications for the biology of ALK-rearranged NSCLC in terms of metastatic propensity and resistance to therapy.
منابع مشابه
EML4-ALK induces epithelial-mesenchymal transition consistent with cancer stem cell properties in H1299 non-small cell lung cancer cells.
The echinoderm microtubule-associated protein-like 4(EML4)--anaplastic lymphoma kinase (ALK) fusion gene has been identified as a driver mutation in non-small-cell lung cancer (NSCLC). However, the role of EML4-ALK in malignant transformation is not entirely clear. Here, for the first time, we showed that H1299 NSCLC cells stably expressing EML4-ALK acquire EMT phenotype, associated with enhanc...
متن کاملHypoxia induces resistance to ALK inhibitors in the H3122 non-small cell lung cancer cell line with an ALK rearrangement via epithelial-mesenchymal transition
Patients with non-small cell lung cancer (NSCLC) with echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) rearrangements generally respond to ALK inhibitors such as crizotinib. However, some patients with EML4-ALK rearrangements respond poorly to crizotinib. Hypoxia is involved in the resistance to chemotherapeutic treatments in several cancers, and we inves...
متن کاملJARID2 Is Involved in Transforming Growth Factor-Beta-Induced Epithelial-Mesenchymal Transition of Lung and Colon Cancer Cell Lines
Histone methylation plays a crucial role in various biological and pathological processes including cancer development. In this study, we discovered that JARID2, an interacting component of Polycomb repressive complex-2 (PRC2) that catalyzes methylation of lysine 27 of histone H3 (H3K27), was involved in Transforming Growth Factor-beta (TGF-ß)-induced epithelial-mesenchymal transition (EMT) of ...
متن کاملMutations in EMT-Related Genes in ALK Positive Crizotinib Resistant Non-Small Cell Lung Cancers
Crizotinib is an effective drug for patients with anaplastic lymphoma kinase (ALK)-positive non-small-cell lung cancer (NSCLC), but upon treatment, the tumors inevitably become crizotinib resistant in time. The resistance mechanisms are only partly understood. In this study, we aim to identify gene mutations associated with resistance in ALKpositive advanced non-squamous NSCLC treated with criz...
متن کاملmiR-200c regulates crizotinib-resistant ALK-positive lung cancer cells by reversing epithelial-mesenchymal transition via targeting ZEB1
Crizotinib is an orally administered drug for the treatment of patients with anaplastic lymphoma kinase (ALK)-positive locally advanced or metastatic non‑small cell lung cancer (NSCLC). Despite the impressive efficacy of crizotinib in the treatment of ALK‑positive lung cancer, acquired resistance eventually develops in the majority of patients. The microRNA (miR)‑200c reverses the resistance of...
متن کامل